MISC: A MIxed Strategy-Aware Model Integrating COMET for Emotional Support Conversation

Quan Tu^{1*†}, Yanran Li^{2*}, Jianwei Cui², Bin Wang², Ji-Rong Wen^{1,3} and Rui Yan^{1,3‡}

¹Gaoling School of Artificial Intelligence, Renmin University of China

²Xiaomi AI Lab

³Beijing Academy of Artificial Intelligence

¹{quantu, jrwen, ruiyan}@ruc.edu.cn

²{liyanran, cuijianwei, wangbin11}@xiaomi.com

Code: https://github.com/morecry/MISC.

(ACL-2022)

- 1. Introduction
- 2. Approach
- 3. Experiments

xAttr 鉴于人物 X 在事件中的角色,如何描述他们。 xEffect 事件对人 X 的影响。

Introduction

xWant 事件结束后 X 可能想要做什么。

和孩子呆在家里,停止户外工作。

我感到很沮丧,因为我不得不辞掉工作呆在家里陪 我的孩子,因为他们的学校很偏远。

Supporter

当然可以。你承认自己的感受是件好事。为了改善 你的情绪, 你可以练习爱好或其他你喜欢做的事情。

Figure 1: An Emotional Support Conversation Example.

Seeker

问题 询问与问题相关的信息,以帮助寻求帮助的人阐明他们面临的问题。 自我表露 透露你有过的类似经历或与求助者分享的情绪,以表达你的同理心。 **肯定和安慰** 肯定求助者的优势、动机和能力,并提供安慰和鼓励。 提供建议 提供有关如何改变的建议,但要小心不要越权并告诉他们该怎么做。

Approach

Figure 2: The overview of the proposed MISC which consists of a mental state-enhanced encoder, a mixed strategy learning module, and a multi-factor-aware decoder.

Problem Formulation

the target is to estimate the probability distribution $p(\mathbf{r}|\mathbf{c})$ of the dataset $\mathcal{D} = \{\mathbf{c}^{(i)}, \mathbf{r}^{(i)}\}_{i=1}^N$ where $\mathbf{c}^{(i)} = (\mathbf{u}_1^{(i)}, \mathbf{u}_2^{(i)}, ..., \mathbf{u}_{n_i}^{(i)})$

the seeker's last post (ut-terance) as x. the probability distribution p(r|c, s, x).

Approach

Mental State-enhanced Encoder

$$egin{aligned} \hat{oldsymbol{H}}^s &= [oldsymbol{h}_{1,1}^s, oldsymbol{h}_{2,1}^s, ..., oldsymbol{h}_{N_{st},1}^s] \ oldsymbol{h}_i^s &= \mathtt{E}(oldsymbol{b}_i^s) \end{aligned}$$

(3)
$$\boldsymbol{Z} = \operatorname{softmax}(\hat{\boldsymbol{H}}^s \cdot \boldsymbol{C}^T) \cdot \boldsymbol{C}$$
 (4) $\boldsymbol{H}^s = \operatorname{LN}(\hat{\boldsymbol{H}}^s + \boldsymbol{Z})$

Mixed Strategy Learning

Mental State-Enhanced Encoder

$$C = E(CLS, \boldsymbol{u}_1, EOS, \boldsymbol{u}_2, ..., \boldsymbol{u}_{n_i})$$
 (1)

$$oldsymbol{B}^s = igcup_{j=1}^{N_r} \mathtt{COMET}(rel_j, oldsymbol{s})$$
 (2)

where N_r is the number of pre-defined relations in COMET, and rel_j stands for the j-th specific relation, such as xAttr and xReact. Note that given a certain event-relation pair, COMET is able to generate multiple "tails" of free-form mental state information, \boldsymbol{B}^s is a set of N_s mental state blocks, i.e., $\boldsymbol{B}^s = \{\boldsymbol{b}_j^s\}_{j=1}^{N_s}$. Similarly, we can obtain the set of mental state blocks \boldsymbol{B}^x using the seeker's last post \boldsymbol{x} .

xAttr 鉴于人物 X 在事件中的角色,如何描述他们。

xReact 人物X对事件的反应。

Mixed Strategy Learning

Mixed Strategy Learning Module

$$\boldsymbol{p}^g = \text{MLP}(\boldsymbol{C}_1) \tag{5}$$

where MLP is a multi-layer perceptron, and p^g records the probabilities of each strategy to be used.

$$\boldsymbol{h}^g = \boldsymbol{p}^g \cdot \boldsymbol{T} \tag{6}$$

response generation. Here, we masterly learn from the idea of VQ-VAE's codebook to represent strategy(Oord et al., 2017). The strategy codebook $T \in \mathbb{R}^{m \times d}$ represent m strategy latent vectors (here m = 8) with the dimension size d. By weighting T using p^g , we are able to obtain a comprehensive strategy representation h^g

Approach

what's wrong with you EOS s-r Attn Feed Forward |o'|Add & Norm c-Attn T-r Attn **→**h^g Add & Norm Self Attention x-r Attn

Learning

Multi-Factor-aware Decoder

[CLS] what's wrong with you

Multi-Factor-Aware Decoder

$$m{A}^c = ext{CROSS-ATT}(m{O}, m{H})$$
 $m{A}^s = ext{CROSS-ATT}(m{O}, m{H}^s)$
 $m{A}^x = ext{CROSS-ATT}(m{O}, m{H}^x)$
 $m{A}^g = ext{CROSS-ATT}(m{O}, m{h}^g)$
 $m{O}' = ext{LN}(m{A}^c + m{A}^s + m{A}^x + m{A}^g + m{O})$
 $m{\mathcal{L}}_r = -\sum_{t=1}^{n_r} \log(p(r_t|m{r}_{j < t}, m{c}, m{s}, m{x}))$
 $m{\mathcal{L}}_g = -\log(p(g|m{c}, m{s}, m{x}))$
 $m{\mathcal{L}} = m{\mathcal{L}}_r + m{\mathcal{L}}_g$
(8)

where n_r is the length of response, g is the true strategy label, \mathcal{L}_g is the loss of predicting strategy, \mathcal{L}_r is the loss of predicting response, and \mathcal{L} is combined objective to minimize.

Category	Train	Dev	Test
# dialogues	14117	1764	1764
Avg. # words per utterance	17.25	17.09	17.11
Avg. # turns per dialogue	7.61	7.58	7.49
Avg. # words per dialogue	148.46	146.66	145.17

Table 1: The statistics of processed ESConv dataset.

Figure 6: The strategy distribution in the original ES-Conv dataset.

Model	ACC(%)↑	PPL↓	D-1 ↑	D-2 ↑	B-2 ↑	B-4 ↑	R-L↑	M (%)↑
Transformer	-	89.61	1.29	6.91	6.53	1.37	15.17	10.33
MT Transformer	-	89.52	1.28	7.12	6.58	1.47	14.75	10.27
MoEL	-	133.13	2.33	15.26	5.93	1.22	14.65	9.75
MIME	-	47.51	2.11	10.94	5.23	1.17	14.74	9.49
BlenderBot-Joint	28.57	18.49	4.12	17.72	5.78	1.74	16.39	9.93
MISC	31.63	16.16	4.41	19.71	7.31	2.20	17.91	11.05

Table 2: Automatic Evaluation Results on ESConv.

Model	Flu.	Know.	Emp.
Transformer	0.62	0.31	0.29
MT Transformer	0.78	0.34	0.82
MoEL	0.36	0.80	0.33
MIME	1.13	0.27	0.35
BlenderBot-Joint	1.87	0.74	1.21
MISC	1.84	1.06	1.44

Table 3: Manual Evaluation Results. The Fleiss Kappa score (Fleiss and Cohen, 1973) reaches 0.445, indicating a moderate level of agreements.

Model	D-1 ↑	B-2 ↑	R-L↑	M (%)↑
MISC	4.41	7.31	17.91	11.05
w/o g	3.85	7.09	16.75	9.85
w/o s	4.39	6.35	17.05	10.06
w/o x	4.27	6.49	17.03	10.09

Table 4: Evaluation Results of Ablation Study.

	Situation
Seeker	My boyfriend and I recently broke up due to long-distance relationship and the impact COVID-19
	Context
Seeker	Hi, I'm hoping you can help me get through this difficult time.
Supporter	Hi, can you please explain the difficult time you are having?
Seeker	My boyfriend broke up with me and I've been upset. We live in different parts of the country and
Seeker	Have you ever gone through a break up?
	Response
Transformer	I am so sorry that you are not able to get your friends and family. (Inconsistency)
MT Transformer	I have had a similar situation and I understand. It was the only way I was in similar situation, I have
WIT Transformer	found that way to get out of my life. I have and i was in a similar situation. (Repetition)
MIME	I know it is hard, but it is always good to do things out for yourself. (Poor Empathy)
MoEL	I am so sorry that you are feeling better. I had a relationship with your boyfriend! (Aggressiveness)
BlenderBot-Joint	I have not but i have been through a lot of breakups (Contradiction)
MISC	I have been through a breakup and I can tell you that it was very painful. I have had to move on
MISC	from a relationship because of it. (Strong Empathy)
Ground-Truth	It sounds like you are really stressed over the breakup and you want to know how to move forward.

Table 5: Responses generated from MISC and other compared models. Some words are omitted due to space limit.

Component	D-1 ↑	B-2 ↑	R-L↑	M (%)↑
MISC	4.41	7.31	17.91	11.05
MISE	3.94	7.09	16.93	10.53

Table 6: Results of MISC with Different Emotions.

Figure 4: The visualization of how the MISC organizes the response under the effect of multiple factors.

-1↑ B	3-2↑ R	-L↑ M	I (%)↑
			1 1.05
	41 7	41 7.31 1	41 7.31 17.91 1

Table 7: Comparison of different strategy modeling.

Figure 5: The Top-k Strategy Prediction Accuracy.

Figure 3: The strategy distribution in the different stage of conversation.

Thank you!